Profinite Completions and Canonical Extensions of Heyting Algebras
نویسندگان
چکیده
We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and of Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion ̂ H of a Heyting algebra H, and characterize the dual space of ̂ H. We also give a necessary and sufficient condition for the profinite completion of H to coincide with its canonical extension, and provide a new criterion for a variety V of Heyting algebras to be finitely generated by showing that V is finitely generated if and only if the profinite completion of every member of V coincides with its canonical extension. From this we obtain a new proof of a well-known theorem that every finitely generated variety of Heyting algebras is canonical. Mathematics Subject Classifications (2000) Primary 06D20 ·Secondary 06D50 · 06B30, 03B55
منابع مشابه
Comparison of MacNeille, Canonical, and Profinite Completions
Using duality theory, we give necessary and sufficient conditions for the MacNeille, canonical, and profinite completions of distributive lattices, Heyting algebras, and Boolean algebras to be isomorphic.
متن کاملOn profinite completions and canonical extensions
We show that if a variety V of monotone lattice expansions is finitely generated, then profinite completions agree with canonical extensions on V . The converse holds for varieties of finite type. It is a matter of folklore that the profinite completion of a Boolean algebra B is given by the power set of the Stone space of B, or in the terminology of Jónsson and Tarski [5], by the canonical ext...
متن کاملProfinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملOn finitely generated Heyting algebras
We study finitely generated Heyting algebras from algebraic and model theoretic points of view. We prove amon others that finitely generated free Heyting algebras embed in their profinite completions, which are projective limits of finitely generated free Heyting algebras of finite dimension.
متن کاملTopo-canonical completions of closure algebras and Heyting algebras
We introduce and investigate topo-canonical completions of closure algebras and Heyting algebras. We develop a duality theory that is an alternative to Esakia’s duality, describe duals of topo-canonical completions in terms of the Salbany and Banaschewski compactifications, and characterize topo-canonical varieties of closure algebras and Heyting algebras. Consequently, we show that ideal compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Order
دوره 23 شماره
صفحات -
تاریخ انتشار 2006